Sunday, May 5, 2013

Flight behavior of hungry malaria mosquitoes analysed

May 3, 2013 ? Malaria mosquitoes go to work cautiously before landing on human skin and biting. Just before a mosquito lands, it reacts to both odours and heat given off by the human body. Researchers at Wageningen University came to this conclusion after studying images made with infrared-sensitive cameras.

Their research was published in the scientific journal PLOS ONE on 2 May.

Most malaria mosquitoes prefer human blood. They fly in the dark while their host is sleeping. In order to locate a host, they focus on traces of carbon dioxide, released by all animals, and on characteristic human odours. At a distance of 1.5 m from their host, they mainly follow body odours. Just before they land, however, heat radiating from the human body also plays a significant role.

The researchers and technicians at Wageningen University, which is part of Wageningen UR, worked with colleagues from Noldus Information Technology BV using video recordings and automated 3D image analyses to clarify how malaria mosquitoes find their host.

In order to investigate seeking behaviour in mosquitoes, the researchers placed the insects in a special dark wind tunnel measuring 60 by 60 cm, with a length of 1.6 m. The air stream had a constant temperature and humidity, and a speed of 20 cm/second. The flight of each mosquito (Anopheles gambiae) in the tunnel was filmed by means of infrared-sensitive cameras.

When human odours were absent, the mosquitoes continued to fly into the wind through the tunnel.

As soon as the researchers added an odour to the air stream, the mosquitoes followed a complex and long route to the source, and this took about twice as long as without odours. Adding a heat source (34?C, the same as human skin) again doubled the length of the search and was crucial for finding the odour source. Adding heat caused the flight pattern to change drastically whenever mosquitoes came near (about 20 cm) to the source. The exact mechanism of landing will be the subject of a future investigation.

This research at Wageningen demonstrates that the interaction of odour and heat is effective in bringing mosquitoes to a host. This is the first study to make malaria mosquito flight behaviour 'visible' in the dark and it demonstrates that insects are extremely good at orientating themselves towards their host at night. This discovery means that existing odour traps can be enhanced by, for example, adding a source of heat, or by changing the position of the bait in relation to the trap opening. This is one of the ways of controlling malaria, still a serious disease affecting millions of people in large parts of the world. The new information on transmission by the malaria mosquito can be used to combat the disease more effectively.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Wageningen University and Research Centre.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Jeroen Spitzen, Cornelis W. Spoor, Fabrizio Grieco, Cajo ter Braak, Jacob Beeuwkes, Sjaak P. van Brugge, Sander Kranenbarg, Lucas P. J. J. Noldus, Johan L. van Leeuwen, Willem Takken. A 3D Analysis of Flight Behavior of Anopheles gambiae sensu stricto Malaria Mosquitoes in Response to Human Odor and Heat. PLoS ONE, 2013; 8 (5): e62995 DOI: 10.1371/journal.pone.0062995

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_health/~3/kgLlrNcJpG8/130503105109.htm

daniel von bargen 8 bit google maps kids choice awards 2012 micah true blood diamond kansas vs ohio state winning mega million numbers

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.